Puntos de Brocard

El punto de Brocard de un triángulo, construido en el punto de intersección de tres círculos.

En geometría, los puntos de Brocard son puntos especiales dentro de un triángulo. Toman su nombre por Henri Brocard (1845 – 1922), un matemático francés.

Definición

En un triángulo ABC con lados a, b, y c, donde los vértices se llaman A, B, y C en orden contrario a las manecillas del reloj, hay exactamente un solo punto P tal que los segmentos de línea AP, BP, y CP forman el mismo ángulo ω, con los respectivos lados c, a, y b, es decir que

El punto P se llama el primer punto de Brocard o punto de Brocard positivo del triángulo ABC, y el ángulo ω se llama el ángulo Brocard del triángulo. Este ángulo cumple la propiedad

donde son los ángulos de los vértices respectivamente.

También hay un segundo punto de Brocard o punto de Brocard negativo, Q en el triángulo ABC, tal que los segmentos de línea AQ, BQ, y CQ forman ángulos iguales con los lados b, c y a respectivamente. En otras palabras, las ecuaciones sí son válidas. Es notable que este segundo punto de Brocard tiene el mismo ángulo de Brocard que el primer punto de Brocard. En otras palabras, el ángulo es el mismo que

Los dos puntos de Brocard están muy relacionados entre sí; de hecho, la diferencia entre el primero y el segundo depende del orden en que los ángulos del triángulo ABC se toman. Entonces, por ejemplo, el primer punto Brocard del triángulo ABC es el mismo que el segundo punto de Brocard del triángulo ACB

Los dos puntos Brocard de un triángulo ABC son cada uno conjugados isogonales del otro.